Al-Assisted Monolith
to Microservices
Transformation

Accelerating Legacy Modernization with the
Cadmus Logic.AlI®™ ReGenX Platform

Executive Summary

Breaking apart a monolithic application into microservices has always been one of the hardest
problems in software architecture. Teams spend months analyzing code, debating boundaries,
and worrying about what they might miss. This whitepaper explains the core challenges of
monolith to microservices transformation and introduces Cadmus Logic.AIS™ ReGenX, an
Al-assisted modernization platform that transforms monolith code bases regardless of size

or complexity. It walks through the five-phase methodology that underpins the platform. It
describes how ReGenX analyzes code, discovers domains, plans migrations, defines services,
and produces implementable microservices in a language and framework agnostic manner.

CADMUS |

It also shows how artificial intelligence (Al) is
integrated into key decision points and how human
expertise remains central to the process. Rather
than replacing architects, ReGenX augments

their work. It automates deep analysis of existing
systems, proposes domain boundaries, designs
migration plans and generates detailed service
definitions and code. At every step, humans stay in
control and use the platform’s output as a starting
point to make informed decisions.

‘ ‘ At every step, humans
stay in control and use the

platform’s output as a starting
point to make informed decisions.

The Challenge:
Why Microservices
Transformations Fail

Most organizations that attempt a microservices
migration encounter similar obstacles. Code analysis
takes weeks. Domain boundaries remain vague.
Migration plans fail to capture real dependencies
and risks. Service definitions often leave out critical
implementation details until late in the project when
changes are expensive.

The core problem is not a lack of expertise.
Experienced architects still struggle with the

sheer volume of information in large codebases

and extensive documentation. They must track
thousands of classes, follow long dependency
chains, and understand how data flows through the
system. Doing this work by hand is time consuming
and error prone.

ReGenX addresses this challenge by embedding
an Al-assisted, five-phase methodology into a
single modernization platform. It helps teams turn
a complex, opaque monolith into a set of well-

Al-Assisted Monolith to Microservices Transformation

defined microservices backed by a clear, data-driven
migration plan.

Introducing Cadmus
Logic.AI®™ ReGenX

ReGenX is a modernization platform that
implements a complete five phase approach

for transforming monolithic applications into
microservices. It connects deep static analysis,
domain driven discovery, migration planning, service
definition, and code generation into one coherent
workflow.

The platform is built around a simple idea. A
transformation of this scale should be guided by
data and patterns, not just by intuition. Each phase
produces structured, machine-readable output that
feeds the next phase and that can also be inspected
and refined by humans.

Within ReGenX, each phase is implemented as an
engine that consumes and produces JSON-based
artifacts. These artifacts capture the monolith’s
structure, proposed domains, migration waves,
service specifications, and generated code
mappings. This design allows teams to run phases
iteratively, adjust decisions earlier, and keep a clear
trace of how the architecture evolves over time.

‘ ‘ A transformation of this
scale should be guided by
data and patterns, not just by
intuition. Each phase produces

structured, machine-readable
output that feeds the next phase
and that can also be inspected
and refined by humans.

The Five Phase

Methodology Inside
the Platform

MONOLITHIC
APPLICATION

PHASE 1: Code Analysis

Static analysis of codebase
structure, dependencies, data

: CodeAnalysisResult.json

PHASE 2: Domain Analysis

Al analysis of domain boundaries,
shared code, concerns, and architectural

{ DomainBoundaries.json '

% PHASE 3: Migration Planning

Dependency resolution, sequencing,
risk analysis, timeline

MigrationPlan.json :

PHASE 4: Service Definition

£
API specs, event schemas, data models,
security specs, implementation guides

N

MicroserviceDefinition.json :

PHASE 5: Code Generation

Generate working microservice
code in target language

Generated Code | (Nodejs/Java/.NET/Python)

MICROSERVICES
ARCHITECTURE

Figure 1. Cadmus Logic.AI*™ ReGenX Five-Phase Methodology

The core of ReGenX is a five-phase methodology
that breaks the transformation into manageable
steps. The phases are not rigid. Teams can move
back and forth between them as they learn more
about the system. What follows in Figure 1 is a look
at each phase and how the platform supports it.

Phase 1: Code Analysis

The journey begins with a clear understanding of
the system as it exists today. In Phase 1, ReGenX
performs a comprehensive static analysis of the
monolith, examining the codebase at multiple levels
to construct an accurate, deeply detailed model of
the application.

Al-Assisted Monolith to Microservices Transformation

This analysis captures the fundamental building
blocks of the system. It identifies classes and
methods, measures structural and logical
complexity, and maps how components depend on
one another. Along the way, the platform records
how different parts of the application interact with
underlying databases—tracking reads, writes, and
patterns of access that reveal how the monolith
actually behaves in production-like scenarios.

As part of this process, the platform pinpoints key
elements such as:

e Classes and their associated responsibilities
e Dependencies each component relies on

e Data entities touched by each part of the
system

e Transaction boundaries revealed through
related database operations and transactional
behaviors

This rich context becomes essential in later phases,
especially when determining how to define service
boundaries and evaluate extraction strategies
without disrupting core workflows.

The outcome of Phase 1 is a comprehensive JSON
representation of the monolith’s structure and
behavior. This artifact includes module breakdowns,
dependency graphs, data access mappings, and
detailed transaction boundary information. Within
ReGenX, it serves as the authoritative source of
truth that all downstream analysis and planning
builds upon.

Phase 2: Domain Analysis
K o o o o

cccccc sis Domain Boundaries Migraton Plan

Code Analysis

ul Complexity Distribution

e ‘18 3 6 o

27

1. High Complexity Classes

869 e

2 34

Figure 2. Representation of ReGenX Code
Analysis Outcome

After the monolith’s internal structure has been
mapped, the next step is understanding how

those technical components relate to real business
domains. In Phase 2, ReGenX analyzes the system’s
behavior to uncover natural functional groupings
and the domain concepts they represent.

As ReGenX processes these relationships, it

Al-Assisted Monolith to Microservices Transformation

strategies based on real domain relationships rather
than assumptions or guesswork.

Phase 3: Migration Planning

Knowing the desired service boundaries is only
the starting point. The difficult part is determining
how to reach that future state without disrupting

& Proposed Microservices

27

business operations. Some services are deeply
entangled with others; some support mission
critical workflows, and others can be modified with
relatively little risk.

In Phase 3, ReGenX turns these domain insights
into a practical, execution-ready migration plan.
The platform examines a range of factors—service
dependencies, extraction complexity, and business
criticality—to shape a phased rollout that balances
speed with safety.

Figure 3. Example Output of ReGenX
Domain Boundaries Phase

identifies patterns that reveal emerging domain
boundaries. These patterns come from how
components interact, which data entities they share,
and how often certain parts of the system work
together to support a specific capability. Through
this analysis, the platform highlights:

e Cohesive groups of classes and methods

Shared data entities

Recurring collaboration patterns

Areas where responsibilities align with distinct
business concepts

These insights help teams see where the monolith
naturally aligns with domain-driven design (DDD)
principles and where seams already exist. This
understanding becomes critical in later phases,
informing how service boundaries should be drawn
and where the cleanest separations can be made.

The output of Phase 2 is a structured set of domain
clusters and conceptual groupings derived directly
from the system’s observed behavior. Inside

As part of this planning process, the platform
identifies:

Which services must precede others in the
migration sequence
Where teams can safely work in parallel

Which areas pose the highest migration risk

Implement proven patterns—such as the
Strangler Fig approach— to gradually shift
functionality from a monolith into new,
decoupled services

Domain Boundaries Migration Plan

eeeeeee

,,,,,

wwwwwww

27

ReGenX, this becomes a foundational guide for

defining future services and evaluating extraction

Figure 4. Example Output From ReGenX Migration Plan

The result is a detailed migration roadmap that
includes:

e The recommended order of service extraction

e Estimated timelines derived from complexity
analysis

e Required prerequisites, including
infrastructure, or architectural updates

e Testing, validation, and rollback strategies
tailored to each phase

Teams can refine and adapt to this plan as they
progress. Because the platform captures all domain
and migration data in structured form, any updates
to service boundaries or dependencies can be
seamlessly incorporated—without rebuilding the

plan from the ground up.

Phase 4: Service Definition

Many approaches to microservices stop once high-
level service boundaries are defined, but teams still
face the challenge of determining how APIs should
be shaped, which events to publish, how data
models should evolve, and what security rules to

apply.

Phase 4 in ReGenX goes deeper. It uses the agreed
upon domain boundaries and the migration plan to
generate detailed, production-ready specifications
for every microservice. For each service, the
platform designs RESTstyle endpoints with the
appropriate HTTP methods, request and response
schemas, and error-handling patterns. It derives
data models from the entities the service owns and
produces database schema recommendations with
sensible constraints and indexes.

As part of this process, the platform defines the key
architectural elements for each service, including:

e REST endpoints, payload structures, and
standardized error responses

e Data models and corresponding database
schema suggestions

e Asynchronous events for cross service
communication aligned with patterns such as
CloudEvents

Al-Assisted Monolith to Microservices Transformation

e Security requirements covering authentication,
authorization rules, and data protection
considerations

The level of specificity matters. Instead of offering
vague instructions like “add a pet registration
endpoint,” the specification outlines the exact
payload structures, validation rules, expected
responses, error conditions, and illustrative
interactions. It also ties these behaviors back to the
underlying domain entities and the state transitions
that govern their lifecycle.

O

Code Analys

7 Load Phase Data

¥ Choose JSON File

sis ‘Domain Boundaries

[Service Definitions Overview

6 32 6 rest

- Configuration

APIStyle REST APiVersionv1 Authenticatio/wT Databasepostgres

EventFormat cloudevents Analysidepth decp-

implementation-ready

27 «

@ Services Summary

Petservice Ownerservice

RevenusService

ClinicManagemenService

===

Figure 5. ReGenX Platform Output Example from Service
Definition Phase

Phase 5: Code Generation

The final phase turns specifications into running
code. This is where Al assistance reaches its most
visible form.

In Phase 5, ReGenX generates complete service
implementations from the service definitions
produced earlier. It creates REST controllers

or equivalent endpoints, business logic layers,
data access components, event publishers

and subscribers, configuration files, and basic
observability instrumentation. The generated code
follows production ready patterns. It includes
structured error handling, input validation,
transaction management, message serialization

and deserialization, security middleware and health
check endpoints.

Different technology stacks receive idiomatic
implementations. Whether the target is Java

with Spring Boot, Python with a modern web
framework or Node.js with Express, the structure
and patterns remain consistent while language
specific conventions are respected. The result

is not a throwaway prototype. Teams start with
solid implementations that they can review, adapt
to internal standards, and extend with additional
business logic.

Code Generation @

7 Load Phase Data

Overview Services Statistics RawD: ata

Code Generation

© Generation Configuration

27 cissses

Figure 6. Example from ReGenX Phase 5 Code Configuration

How Al Integration Works
in ReGenX

A key reason ReGenX is effective is how it
incorporates Al into the phases where judgment and
design matter most. The platform does more than
simple pattern matching or template filling. It uses
large language models (LLMs) that can reason about
domains, interfaces, and code.

During domain discovery, Al applies DDD ideas
to the data from code analysis. It looks for natural
groupings of entities and behaviors that represent
business capabilities rather than only technical
structures. This allows it to detect domains that

Al-Assisted Monolith to Microservices Transformation

might not be obvious from file organization alone.

When defining services, Al uses knowledge of

API design and microservices patterns to redesign
monolith interactions for a distributed world. It
chooses appropriate request and response styles,
error handling strategies and event flows based on
the analyzed behavior. The specifications reflect the
real business logic of the system instead of generic
templates.

For code generation, the Al produces code that is
idiomatic for the chosen language. It uses familiar
patterns and naming conventions, adds comments
where needed, and creates hooks for testing.

The Human Element with
ReGenX

Despite the level of automation, human expertise
remains central and essential to successful system
transformations and modernizations. ReGenXis
designed as a partner for architects, engineers, and
product leaders, not as a replacement for them.
Architects review and refine the domain boundaries
that the platform proposes. They bring knowledge
about long-term business strategy, organizational
constraints, and non-functional requirements that
cannot be inferred from code alone.

Product managers and business stakeholders help
prioritize which services to extract first. They weigh
the potential value of new capabilities against

the effort and risk of change. Engineers evaluate
generated specifications and code. They ensure

‘ ‘ Cadmus Logic.AI®M ReGenX
acts as a tireless analyst and
assistant. It handles the heavy

lifting of analysis and scaffolding,
while people focus on decisions
that require judgment and context.

that implementations align with team standards,
integrate with existing infrastructure and meet
performance expectations.

Operations and platform teams use the migration
roadmap to plan infrastructure, monitoring, and

roll out strategies. They make final decisions about
deployment models, capacity and observability. In
this model, ReGenX acts as a tireless analyst and
assistant. It handles the heavy lifting of analysis and
scaffolding, while people focus on decisions that
require judgment and context.

‘ ‘ By thoroughly analyzing
dependencies and planning careful
migration waves, organizations

avoid many of the pitfalls that have
caused past migrations to fail.

Practical Benefits of Using
ReGenX

An Al-assisted, platform-based approach to
microservices transformation offers several tangible
benefits. Analysis that once required weeks of
manual effort can now be completed in a much
shorter period. Domain boundary proposals give
teams a strong starting point for architecture
discussions. Migration plans become more

concrete and grounded in actual dependencies and
complexity.

Service definitions capture implementation details
early in the process, which reduces surprises during
development. Generated code accelerates delivery
by giving teams working implementations to refine
rather than empty project skeletons.

Most importantly, the approach reduces risk. By
thoroughly analyzing dependencies and planning
careful migration waves, organizations avoid many

Al-Assisted Monolith to Microservices Transformation

of the pitfalls that have caused past migrations to
fail.

Getting Started with
ReGenX

Teams do not need to transform their entire
monolith at once to benefit from the platform. A
sensible approach is to start with a pilot project that
focuses on a non-critical domain.

The pilot begins with running Phase 1 in ReGenX
against the selected part of the system. The team
reviews the analysis, then moves into Phase 2 to
explore domain boundary proposals and refine
them. Next, they use Phase 3 to design a migration
plan for a small set of services, generate detailed
service definitions in Phase 4, and produce code for
one or two services in Phase 5.

This controlled experiment allows the organization
to evaluate the quality of the analysis, the usefulness
of the boundaries, the realism of the migration plan
and the fidelity of the generated specifications and
code. Successful pilots build confidence and create
momentum for applying the platform to larger and
more critical parts of the monolith.

Product Architecture
Overview

Under the hood, ReGenX follows a modular
architecture with clear separation between phases.

Talk to an Expert

See how we harness Al tosupport your
microservices transformation.

Praveen Nedungottil, Chief Technology Officer.
Praveen.Nedungottil@cadmusgroup.com

Ram Polana, Center of Excellence Al/ML Lead.

Ramprasad.Polana@cadmusgroup.com

mailto:Ramprasad.Polana@cadmusgroup.com
mailto:Praveen.Nedungottil@cadmusgroup.com

Each phase operates as an independent engine
that consumes structured JSON input and produces
structured JSON output. The data flow begins with
code analysis, which outputs a JSON document
describing modules, classes, dependencies, data
access patterns, and transaction boundaries. The
domain discovery engine consumes this document
and produces a domain boundaries JSON that maps
code to proposed services and records architectural
guidance.

The migration planning engine uses the analysis

and domain boundaries artifacts to create a
migration plan JSON with phased timelines, service
dependencies, risk assessments, and rollback
strategies. The service definition engine brings
together all earlier outputs to generate a service
definitions JSON that contains API specifications,
data models, event schemas, security configurations,
and implementation patterns.

Finally, the code generation engine consumes
the service definitions and produces source

Looking Forward

Al-Assisted Monolith to Microservices Transformation

code organized by service, including controllers,
business logic, data access, configuration, and
tests. LLMs are integrated at the points where
semantic understanding and design judgment are
most valuable. Structured prompts provide context,
constraints, and examples, which helps the Al
produce consistent and high-quality output.

The platform remains language and framework
agnostic at the analysis and definition stages. It
works with concepts such as classes, methods,
dependencies, and transactions that can be mapped
across languages. Service definitions are expressed
in technology neutral terms, which allows the
generation engine to target different stacks without
changing the earlier phases.

The modular design also supports extensibility and
customization. For each client environment, we can
add custom validation rules, integrate proprietary
patterns, connect external tools, or adjust Al
prompts to align output with internal standards.

Microservices transformation will remain a complex endeavor. Distributed systems introduce their own
challenges in reliability, observability, and operational overhead.

With Cadmus Logic.AlI°™ ReGenX, we offer a way to approach this complexity with more structure and
support. By combining a five-phase methodology with Al assistance and a unified platform, it helps
teams move from monolithic legacy systems toward modern microservices architectures in a more

predictable way.

The future of software architecture is about Al + architects, engineers, and product people working
together, each contributing their strengths. Cadmus Logic.All®™ ReGenX embodies this partnership by
handling the heavy lifting of analysis and scaffolding so that people can focus on modeling the business,

optimizing performance, and delivering value to users.

We’re here to help you succeed. Cadmus provides government, commercial, and other private organizations
worldwide with technology-empowered advisory and implementation services. We help our clients achieve
their goals and drive lasting, impactful change by leveraging transformative digital solutions and unparalleled
expertise across domains. Together, we are strengthening society and the natural world.

For more information, visit cadmusgroup.com.

CADMUS

https://cadmusgroup.com

