
Self-Healing

Test Scripts
AI-Augmented Quality Assurance with
Smarter Element Change Detection

Executive Summary
Frequent user interface (UI) changes in modern applications often break automated test scripts,
leading to delays, increased maintenance effort, and higher costs. Traditional approaches
require manual updates and reruns, which can take hours for even minor changes and
significantly slow down release cycles. This white paper introduces self-healing test scripts, a
solution that combines heuristic logic and identification driven by artificial intelligence (AI) to
automatically adapt to UI changes. The approach uses a layered strategy: first attempting the
original locator, then applying heuristics, and finally leveraging an AI model when needed. A
detailed report of healed elements simplifies maintenance and reduces turnaround time.

2

Self-Healing Test Scripts

By eliminating the need for manual locator updates
and reruns, this solution can save several hours per
test cycle and reduce the risk of undetected bugs.
It improves Continuous Integration/Continuous
Deployment (CI/CD) stability, accelerates delivery
timelines, and minimizes human intervention,
resulting in both time and cost efficiencies. Future
enhancements will include support for multiple
AI models, improved reporting, and automated
script updates. Self-healing powered by Generative
AI (GenAI) offers a practical path to resilient,
efficient test automation that delivers measurable
productivity gains.

Introduction
Modern software applications are increasingly
focused on delivering rich and dynamic UI and
seamless user experiences (UX). While this
evolution enhances usability, it introduces significant
challenges for automated testing. Test automation
frameworks rely heavily on stable UI element
identifiers to validate functionality. However,
frequent changes in application code—especially
updates to UI elements—often break previously
working test scripts. This results in additional effort
to maintain scripts and delays in the testing cycle.

Current Challenges
Testing modern UI/UX applications introduces
several pain points that impact the reliability and
efficiency of automated scripts. These challenges
often lead to increased maintenance effort and
delayed feedback in the development cycle:

• Fragile Test Scripts: Automated scripts are
tightly coupled with UI element identifiers.

Any modification to these identifiers causes
test failures.

• Delayed Bug Detection: When scripts fail due
to identifier changes, subsequent application
updates may introduce bugs that remain
undetected until scripts are repaired.

• Manual Maintenance Overhead: Updating
broken scripts is time-consuming and requires
detailed analysis of failure reports.

As-Is Process
The current approach to handling UI changes in test
automation involves several manual steps:

1. Script Development: Test scripts are created
using the UI element identifiers present in the
application at the time of development.

2. Failure Analysis: When identifiers change,
scenarios using those identifiers fail. Engineers
review test automation reports to identify the
root cause.

3. Script Update: The relevant identifiers in the
script are updated to match the new application
state.

4. Validation: Updated scripts are rerun to confirm
successful execution.

5. Version Control: Changes are committed and
pushed to the repository (e.g., Git).

Time and Effort
On average, analyzing failures and updating scripts
manually takes one to two hours per scenario. In
cases where multiple elements are affected, the
effort can increase significantly, impacting overall
testing timelines and delivery schedules.

“ Instead of halting execution
when a locator becomes
invalid, the script intelligently
searches for alternatives.

3

Self-Healing Test Scripts

Solution Approach

Understanding Self-Healing Scripts
In traditional test automation, scripts fail when UI
element locators change, leading to time-consuming
manual fixes.

Self-Healing Test Script Workflow

Self-healing scripts address this challenge by
introducing resilience into the automation process.
Instead of halting execution when a locator
becomes invalid, the script intelligently searches for
alternatives—first through heuristic methods and
then, if necessary, using AI-driven techniques. This
layered approach ensures tests continue running
smoothly, even in dynamic UI environments.

How the Solution Works
The implementation follows a structured yet
adaptive process.

The journey begins with creating a self-healing
function—a reusable component designed to
identify elements on a web page. When a test runs,
this function first attempts to locate the element
using the original locator. If successful, the script
proceeds without interruption.

However, when the locator fails, the
script doesn’t stop. Instead, it handles the
NoSuchElementException gracefully and invokes
a heuristic method. This method uses alternate
attributes or patterns derived from the original
locator to find the element. The alternate locators
are ordered according to priority in which the
element needs to be identified based on the given
locator value, so the most probable locator will be
used first to identify the element and only if that
fails, it moves to the next most probable locator
to identify the element. If the heuristic approach
succeeds, the test continues seamlessly.

If both the original locator and heuristic method fail,
the solution escalates to the AI-based approach.
Leveraging the Mistral model, the script predicts and
identifies the correct element based on historical
patterns and contextual clues. This AI step is
intentionally reserved as a last resort because it
is more computationally intensive than heuristic
checks.

Finally, the process concludes with report
generation. The report captures:

• Elements that failed with the original locator

• Elements successfully identified through
heuristic or AI methods

• Old and new identifiers used during healing

4

Self-Healing Test Scripts

This transparency simplifies future maintenance and
provides valuable insights into UI changes.

Why This Approach Matters
The benefits of this solution extend beyond reducing
failures:

• Scripts automatically adapt to minor or
moderate UI changes, minimizing manual
intervention.

• Engineers receive detailed reports, making
updates straightforward.

• Tests pass with updated locators during
execution, eliminating the need for reruns.

• XPath or attribute changes no longer derail
automation, thanks to self-healing intelligence.

Tools and Technologies Behind the
Solution
The framework was built using Python and Behave,
developed in PyCharm Community Edition. For
browser interaction, Selenium with ChromeDriver
was employed. The AI capability relies on Mistral
(mistral.mistral-large-2407-v1:0), which powers the
intelligent element identification process.

How to Implement Self-
Healing

For New Applications
Implementing self-healing in a new application
starts with designing a reusable function that
becomes the backbone of element identification.
This function should be modular and structured for
flexibility:

• Create a reusable function to locate UI
elements dynamically.

• Break down the logic into two supporting
functions:

• One for heuristic-based identification.

• Another for AI-driven identification.

The main function should:

1. Attempt to find the element using the default
locator.

2. If that fails, call the heuristic function and return
the element if found.

3. If heuristics fail, escalate to the AI-based
function and return the element if found.

4. If all attempts fail, raise a
NoSuchElementException.

This layered approach ensures that the script
exhausts all options before failing, making it robust
against UI changes.

For Existing Applications
Enhancing existing scripts to become self-healing
requires minimal but strategic changes:

• Introduce the same reusable function
described above.

• Modify existing scripts so that every element
lookup calls this new function.

• In Java-based frameworks, the @FindBy
annotation can be overridden to integrate
this logic seamlessly, ensuring backward
compatibility without rewriting entire scripts.

How is the AI/Heuristics Approach
Validated?
The element locator identified by the heuristic
or AI model is used to substitute the existing
failed identifier used in the script to complete the

Script maintenance issues
can be reduced drastically if the “ development team works hand
in hand with the test automation
team, which can ensure minimum
failures in the automation scripts.

5

Self-Healing Test Scripts

test scenario run. If the scenario has passed the
validation using the identifier provided by the
heuristic approach or the AI model, then it has
proved to be a successful identifier to be used. Also,
a report is created on the new self-healed identifiers
used, so the user can verify again before updating
the script with the new identifier.

Lessons Learned
Setting up the framework was one of the biggest
hurdles, as it required integrating multiple
components and ensuring they worked seamlessly
together. Another challenge was choosing the right
self-healing strategy from several available options.
Each approach had trade-offs, so finding a balance
between performance and adaptability was critical.

Self-healing is not a one-size-fits-all solution. There
are numerous ways to implement it, and the chosen
approach should reflect the project’s requirements
and constraints. The method described here is one
implementation and can be adapted or extended to
suit different environments.

Next Steps
The current implementation lays a strong
foundation, but there are several enhancements
planned to make the framework more robust and
user-friendly:

• Expand AI Capabilities: Integrate additional
LLM (Large Language Model) models so the
framework can support multiple AI options,
improving flexibility and accuracy.

• Improve Reporting: Enhance the self-
healing report to include the file name and
function where updates are required, making
maintenance faster and more intuitive.

• Introduce Scoring for Heuristics: Implement
a score-based system to prioritize the
most likely alternative locators, reducing
unnecessary retries and improving efficiency.

• Unified HTML Report: Develop a consolidated
HTML report that combines overall test results
with self-healing logs, providing a single
source of truth for execution details.

• Automated Script Updates: Explore the
possibility of automatically updating test
scripts with new locators and pushing
changes back to Git for complete end-to-end
self-healing.

Impact of Self-Healing Test Scripts
This depends on the stage of the project, what
technology and tools are used for development,
and the member of the team responsible for the
development. Script maintenance issues can be
reduced drastically if the development team works
hand in hand with the test automation team, which
can ensure minimum failures in the automation
scripts. If proper measures are adopted by the
development and test team working together,
there will only be minimal element locator identifier
issues arising from regular project maintenance, and
the self-healing approach used here will be able
to handle these and thus save considerable time.
This self-healing approach helps teams develop
independently in parallel while minimizing test
failures and thus contributing to significantly faster
development and testing iterations.

Existing Alternatives:
There are tools that make use of AI and images
for self-healing in the industry, but most of these
are paid tools. For open source, there is healenium,
but this is a java based library. At the moment, our
solution with custom built functions with open-
source libraries described here is the only self-
healing automation testing solution.

Explore Our People-Driven,
AI-Empowered Approach

See how we harness AI
to augment processes and
workflows, accelerate innovation,
drive greater efficiencies,
and deliver more value.

6

Self-Healing Test Scripts

Conclusion
Self-healing test scripts represent a significant advancement in test automation. When implemented
correctly, they can dramatically reduce maintenance effort and turnaround time, allowing teams to focus
on higher-value tasks. However, success depends on a thorough understanding of the application under
test and careful design of heuristic and AI strategies tailored to its complexity.

In practice, this approach not only resolves minor to moderate locator issues but also ensures smoother
CI/CD pipelines by preventing failures caused by UI changes. The inclusion of detailed reports further
simplifies script maintenance, making the process almost effortless.

The use of Mistral Large as an AI model has shown promising results in identifying elements accurately
within the limited scope tested. While early outcomes are encouraging, broader testing in complex
environments is essential to validate its effectiveness. As confidence grows, the integration of GenAI
into test automation frameworks can evolve from a simple assistive feature to a core capability, driving
efficiency and resilience across testing processes.

We’re here to help you succeed. Cadmus provides government, commercial, and other private organizations
worldwide with technology-empowered advisory and implementation services. We help our clients
achieve their goals and drive lasting, impactful change by leveraging transformative digital solutions and
unparalleled expertise across domains. Together, we are strengthening society and the natural world.

For more information, visit cadmusgroup.com.

01/14/2026

https://cadmusgroup.com

